Gamma Delta ($\gamma\delta$) T Cells

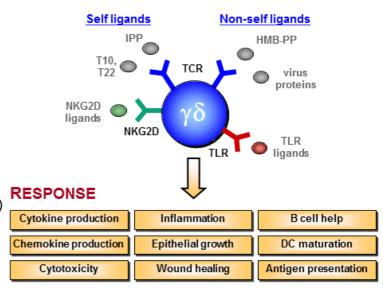
Matthias Eberl, Cardiff University, UK Adrian Hayday, King's College London, UK

Gamma delta $(\gamma\delta)$ T cells are the prototype of 'unconventional' **T cells** and represent a relatively small subset of T cells in peripheral blood. They are defined by expression of heterodimeric **T-cell receptors** (**TCRs**) composed of γ and δ chains. This sets them apart from the classical and much better known CD4+ helper **T cells** and CD8+ cytotoxic **T cells** that express $\alpha\beta$ TCRs. The mechanism of (thymic) selection of $\gamma\delta$ T cells is still largely unkown.

Tissue-associated $\gamma\delta$ T cell populations

 $\gamma\delta$ T cells often show tissue-specific localisation of oligoclonal subpopulations sharing the same TCR chains. For instance, human peripheral blood $\gamma\delta$ T cells are largely V $\gamma9/V\delta2+$, and murine skin $\gamma\delta$ T cells, so-called **dendritic epidermal T cells** (DETCs), are largely V $\gamma5/V\delta1+$. In general, $\gamma\delta$ T cells are enriched in epithelial and mucosal tissues where they are thought to serve as the first line of defense against pathogenic challenge.

Recognition of target cells by $\gamma\delta$ T cells


The majority of $\gamma\delta$ T cells are activated in an MHC-independent manner, in striking contrast to MHC-restricted $\alpha\beta$ T cells. The antigens recognised by most $\gamma\delta$ T cells are still unknown. A small proportion of murine $\gamma\delta$ T cells (<1%) bind the MHC-I-related proteins T10 and T22 that are expressed by highly activated cells. Human V $\gamma9/V\delta2+T$ cells show TCR-dependent activation by certain phosphorylated metabolites such as microbial HMB-PP or eukaryotic isoprenoid precursor IPP. Due to metabolic dysregulation IPP is often accumulated by cancer cells. Some $\gamma\delta$ T cells also recognise markers of cellular stress, resulting from infection or tumorigenesis. Stress surveillance performed by $\gamma\delta$ T cells is thought to depend not only on their TCRs but also on co-stimulatory signals from, for instance, NK-type receptors. Finally, $\gamma\delta$ TCRs have been shown to recognise lipid antigens presented by CD1 molecules, in particular CD1d.

$\gamma\delta$ T cell-mediated immune responses

γδ T cells display broad functional plasticity following recognition of infected/transformed cells by production of **cytokines** (IFN-γ, TNF-α, IL-17) and **chemokines** (RANTES, IP-10, lymphotactin), **cytolysis** of infected or transformed target cells (perforin, granzymes, TRAIL), and interaction with other cells including **epithelial cells, monocytes**, **dendritic cells, neutrophils**, and **B cells**. In particular, human Vγ9/Vδ2+ T cells are capable of serving as professional antigen presenting cells.

Certain infections (e.g. human cytomegalovirus) have been shown to drive clonal expansion of peripheral $\gamma\delta$ T cells bearing person-specific TCRs, indicating the adaptive nature of $\gamma\delta$ T cell-mediated immune response.

RECOGNITION

British Society for immunolog

$\gamma\delta$ T cells for immunotherapy

 $\gamma\delta$ T cells are capable of recognising and lysing diverse cancers in an MHC-unrestricted manner, highlighting their potential for pan-population immunotherapy, in contrast to MHC-restricted $\alpha\beta$ T-cell mediated immunotherapy. Past clinical trials, which focused on $V\gamma9/V\delta2+T$ cells expanded using phosphorylated metabolites, showed an overall good safety profile but the clinical efficacy was generally underwhelming. The potential of $\gamma\delta$ T cells for pan-population immunotherapy will be evaluated in upcoming clinical trials using different subsets of $\gamma\delta$ T cells or specific $\gamma\delta$ TCRs.