

Workshop title: The Immune System and Vaccination Document: Student handout

Modelling a pathogen outbreak: Experiment 1

50% vaccinated population

Vaccinated person

Does a 50% vaccinated population provide herd immunity and stop the pathogen spreading?

Hypothesis

Equipment

- Green colouring pencil
- A 50% vaccinated population sheet
- A coin or dice

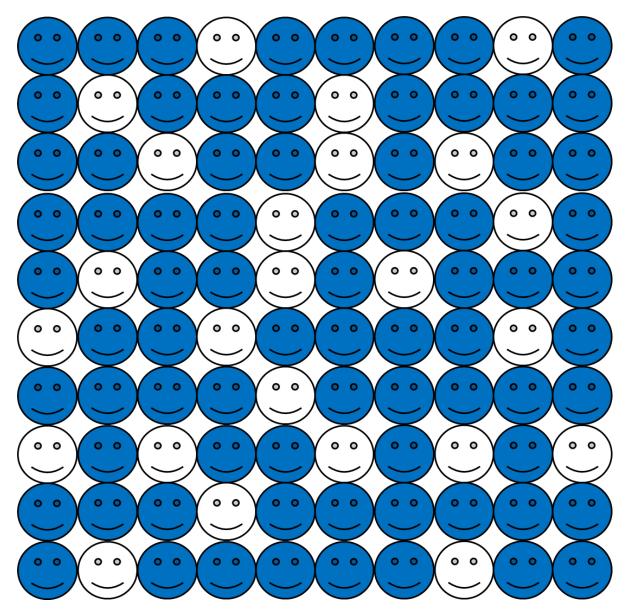
- 1. Pick one of the unvaccinated people. Label that person 1 and colour them in green.
- 2. If they are connected to another unvaccinated person flip a coin or roll a dice so they have a 50% chance of infecting them.
 - a. Heads or Even numbers = Infected
 - b. Tails or Odd numbers = Uninfected
- 3. Infected people are coloured in green and numbered. Write the number of new infections in the Results Table.
- 4. If the newly infected people are connected to an unvaccinated person repeat steps 2 and 3.

Results table 1			
Infected Person	Number of new	Infected Person	Number of new
	infections	(cont.)	infections (cont.)
1			

Total number of infected people =

Analysis

In this experiment, does a 50% vaccinated population stop the pathogen spreading? Why might this be?


Conclusion

How does your finding fit in with the hypothesis?

Modelling a pathogen outbreak: Experiment 2

80% vaccinated population

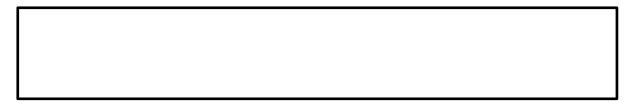
Does an 80% vaccinated population provide herd immunity and stop the pathogen spreading?

Hypothesis

Equipment

- Green colouring pencil
- An 80% vaccinated population sheet
- A coin or dice

- 1. Pick one of the unvaccinated people. Label that person 1 and colour them in green.
- 2. If they are connected to another unvaccinated person flip a coin or roll a dice so they have a 50% chance of infecting them.
 - a. Heads or Even numbers = Infected
 - b. Tails or Odd numbers = Uninfected
- 3. Infected people are coloured in green and numbered. Write the number of new infections in the Results Table.
- 4. If the newly infected people are connected to an unvaccinated person repeat steps 2 and 3.

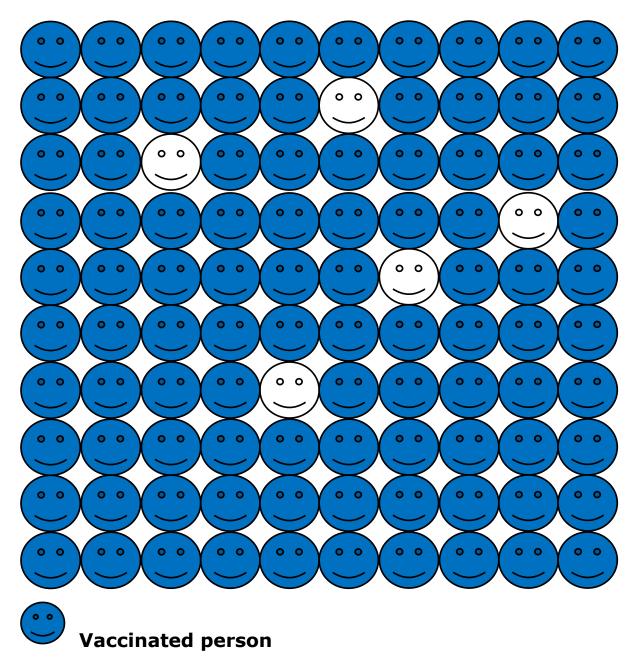


Results table 2	
Infected Person	Number of new infections
1	

Total number of infected people =

Analysis

In this experiment, does an 80% vaccinated population stop the pathogen spreading? Why might this be?


Conclusion

How does your finding fit in with the hypothesis?

Modelling a pathogen outbreak: Experiment 3

95% vaccinated population

Does a 95% vaccinated population provide herd immunity and stop the pathogen spreading?

Hypothesis

Equipment

- Green colouring pencil
- A 95% vaccinated population sheet
- A coin or dice

- 1. Pick one of the unvaccinated people. Label that person 1 and colour them in green.
- 2. If they are connected to another unvaccinated person flip a coin or roll a dice so they have a 50% chance of infecting them.
 - Heads or Even numbers = Infected
 - Tails or Odd numbers = Uninfected
- 3. Infected people are coloured in green and numbered. Write the number of new infections in the Results Table.
- 4. If the newly infected people are connected to an unvaccinated person repeat steps 2 and 3.

Results table 3	
Infected Person	Number of new infections
1	

Total number of infected people =

· · · · · · · · · · · · · · · · · · ·		

Analysis

In this experiment, does a 95% vaccinated population stop the pathogen spreading? Why might this be?

Conclusion

How does your finding fit in with the hypothesis?

Modelling a pathogen outbreak: Conclusions

- Does your data match your hypotheses?
- Overall, what percentage of vaccinated population is needed to stop it spreading?

• Is this a fair test?

• How could this experiment be improved?

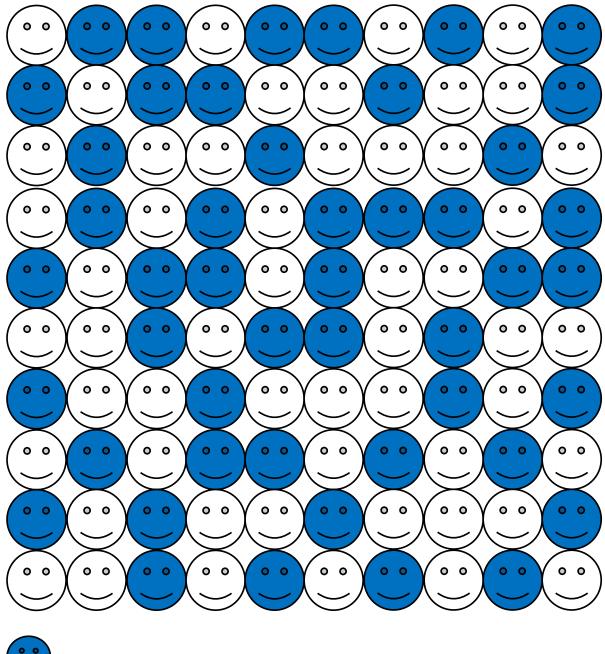
• What further experiments could you perform?

Workshop title: The Immune System and Vaccination Document: Student handout further work

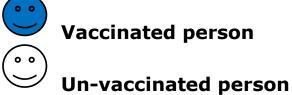
Modelling a pathogen outbreak: Further Experiment 4

Some pathogens spread more or less easily than others. Experiments 1, 2 and 3 had a 50% chance of infecting people around them.

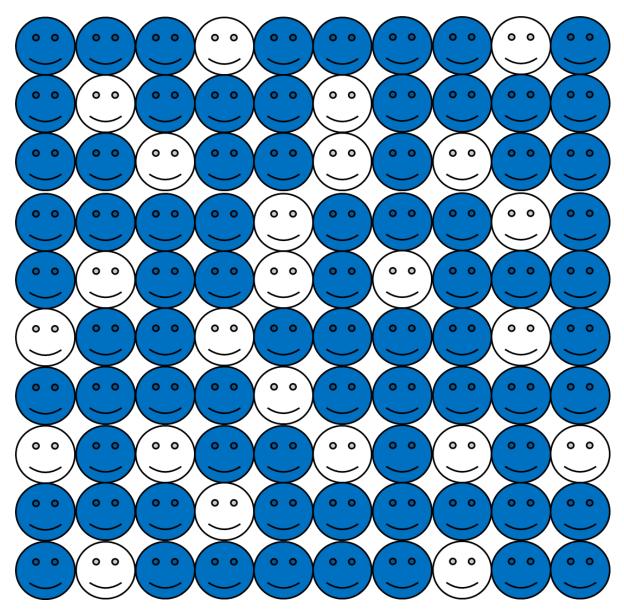
Does decreasing the chance of pathogen infection (from 50% to 25%) change the vaccinated population percentage needed to stop it from spreading?


Hypothesis

Equipment


- Green colouring pencil
- A 50% vaccinated population sheet
- An 80% vaccinated population sheet
- A deck of cards with the face cards removed so all cards 1 (Ace) to 10 of the four suits are used. Shuffle the deck.

- 1. Pick one of the unvaccinated people on the 50% vaccinated population sheet. Label that person 1 and colour them in green.
- 2. If they are connected to another unvaccinated person draw a card so they have a 25% chance of infecting them.
 - a. Spade or clubs = Infected
 - b. Hearts or diamonds = Not Infected
- 3. Infected people are coloured in green and numbered. Write the number of new infections in the Results Table.
- 4. If the newly infected people are connected to an unvaccinated person, repeat steps 2 and 3.
- 5. Once there are no new infections repeat steps 1-5 for the 80% vaccinated population sheet. Always replace the card in the deck and shuffle.



50% vaccinated population

80% vaccinated population

Results table 4 (data from 50% vaccinated population sheet)				
Infected Person	Number of new	Infected Person	Number of new	
	infections	(cont.)	infections (cont.)	
1				

Total number of infected people =

Results table 5 (data from 80% vaccinated population sheet)				
Infected Person	Number of new	Infected Person	Number of new	
	infections	(cont.)	infections (cont.)	
1				

Total number of infected people =

Analysis

In this experiment, does a 50% vaccinated population stop the pathogen spreading? Why might this be?

In this experiment, does an 80% vaccinated population stop the pathogen spreading? Why might this be?

Conclusion

How does your finding fit in with your hypothesis?

How does the number of infected people from experiment 1 and 2 compare to this experiment? Does the number of new infections change?

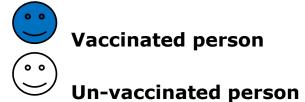
Modelling a pathogen outbreak: Further Experiment 5

Some pathogens spread more or less easily than others. Experiments 1, 2 and 3 had a 50% chance of infecting people around them.

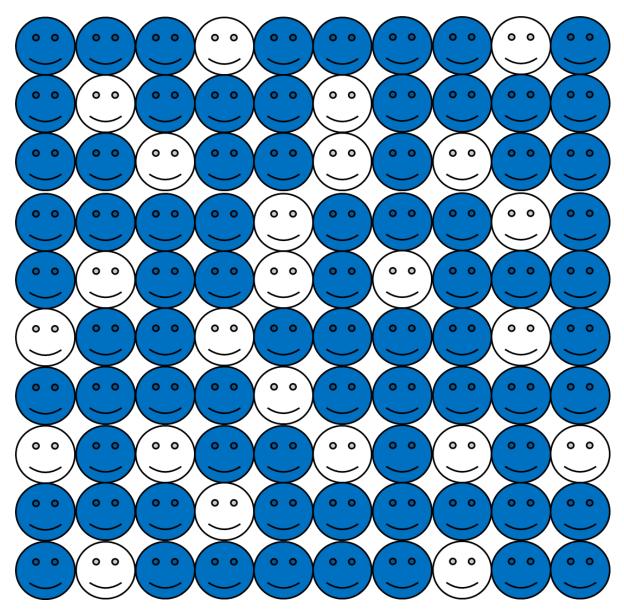
Does increasing the chance of pathogen infection (from 50% to 75%) change the vaccinated population percentage needed to stop it from spreading?

Hypothesis

Equipment


- Green colouring pencil
- A 50% vaccinated population sheet
- An 80% vaccinated population sheet
- A deck of cards with the face cards removed so all cards 1 (Ace) to 10 of the four suits are used. Shuffle the deck.

- 1. Pick one of the unvaccinated people on the 50% vaccinated population sheet. Label that person 1 and colour them in green.
- 2. If they are connected to another unvaccinated person draw a card so they have a 75% chance of infecting them.
 - a. Spades, clubs or hearts = Infected
 - b. Diamond = Not Infected
- 3. Infected people are coloured in green and numbered. Write the number of new infections in the Results Table.
- 4. If the newly infected people are connected to an unvaccinated person repeat steps 2 and 3.
- 5. Once there are no new infections repeat steps 1-5 for the 80% vaccinated population sheet. Always replace the card in the deck and shuffle.



00 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 00 0 0 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 00 0 0 00 00 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0

50% vaccinated population

80% vaccinated population

Results table 6 (da	Results table 6 (data from 50% vaccinated population sheet)				
Infected Person	Number of new	Infected Person	Number of new		
	infections	(cont.)	infections (cont.)		
1					
Total number of infe	cted people =				

Results table 7 (data from 80% vaccinated population sheet)				
Infected Person	Number of new	Infected Person	Number of new	
	infections	(cont.)	infections (cont.)	
1				

Total number of infected people =

Analysis

In this experiment, does a 50% vaccinated population stop the pathogen spreading? Why might this be?

In this experiment, does an 80% vaccinated population stop the pathogen

spreading? Why might this be?

Conclusion

How does your finding fit in with your hypothesis?

How does the number of infected people from experiment 1 and 2 compare to this experiment? Does the number of new infections change?